Deep Forecast: Deep Learning-based Spatio-Temporal Forecasting
نویسندگان
چکیده
The paper presents a spatio-temporal wind speed forecasting algorithm using Deep Learning (DL) and in particular, Recurrent Neural Networks (RNNs). Motivated by recent advances in renewable energy integration and smart grids, we apply our proposed algorithm for wind speed forecasting. Renewable energy resources (wind and solar) are random in nature and, thus, their integration is facilitated with accurate short-term forecasts. In our proposed framework, we model the spatiotemporal information by a graph whose nodes are data generating entities and its edges basically model how these nodes are interacting with each other. One of the main contributions of our work is the fact that we obtain forecasts of all nodes of the graph at the same time based on one framework. Results of a case study on recorded time series data from a collection of wind mills in the north-east of the U.S. show that the proposed DL-based forecasting algorithm significantly improves the short-term forecasts compared to a set of widely-used benchmarks models.
منابع مشابه
High-Order Graph Convolutional Recurrent Neural Network: A Deep Learning Framework for Network-Scale Traffic Learning and Forecasting
Traffic forecasting is a challenging task, due to the complicated spatial dependencies on roadway networks and the time-varying traffic patterns. To address this challenge, we learn the traffic network as a graph and propose a novel deep learning framework, High-Order Graph Convolutional Long Short-Term Memory Neural Network (HGC-LSTM), to learn the interactions between links in the traffic net...
متن کاملSpatio-temporal Graph Convolutional Neural Network: A Deep Learning Framework for Traffic Forecasting
The goal of traffic forecasting is to predict the future vital indicators (such as speed, volume and density) of the local traffic network in reasonable response time. Due to the dynamics and complexity of traffic network flow, typical simulation experiments and classic statistical methods cannot satisfy the requirements of mid-and-long term forecasting. In this work, we propose a novel deep le...
متن کاملمعرفی شبکه های عصبی پیمانه ای عمیق با ساختار فضایی-زمانی دوگانه جهت بهبود بازشناسی گفتار پیوسته فارسی
In this article, growable deep modular neural networks for continuous speech recognition are introduced. These networks can be grown to implement the spatio-temporal information of the frame sequences at their input layer as well as their labels at the output layer at the same time. The trained neural network with such double spatio-temporal association structure can learn the phonetic sequence...
متن کاملDeep Spatio-Temporal Residual Networks for Citywide Crowd Flows Prediction
Forecasting the flow of crowds is of great importance to traffic management and public safety, and very challenging as it is affected by many complex factors, such as inter-region traffic, events, and weather. We propose a deep-learning-based approach, called ST-ResNet, to collectively forecast the inflow and outflow of crowds in each and every region of a city. We design an end-to-end structur...
متن کاملShort-Term Forecasting of Passenger Demand under On-Demand Ride Services: A Spatio-Temporal Deep Learning Approach
Short-term passenger demand forecasting is of great importance to the ondemand ride service platform, which can incentivize vacant cars moving from over-supply regions to over-demand regions. The spatial dependences, temporal dependences, and exogenous dependences need to be considered simultaneously, however, which makes short-term passenger demand forecasting challenging. We propose a novel d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1707.08110 شماره
صفحات -
تاریخ انتشار 2017